
An introduction to algorithmic game semantics

Guy McCusker

University of Bath

GAMES 2009, Udine



Some questions

Consider a simple programming language including
◮ basic while-programs: variable assignment and lookup, arithmetic,

while-loops
◮ first-order procedures
◮ local variables

over a finite data set.

Say that two program phrases M and N are equivalent if M can
always be replaced by N wherever it appears in a program, without
changing the behaviour.

Questions
◮ Is program equivalence decidable?
◮ If so, what is its complexity?

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 2 / 79



A semantic approach

One way to attack a question like this is via denotational semantics:
◮ construct a mathematical model of the language which captures

the appropriate notion of equivalence
◮ study the decidability and complexity properties of the model.

In this talk, we will see how game semantics allows us to do just this.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 3 / 79



Game Semantics

◮ A form of denotational semantics.
◮ Models computation or proof as interaction between a system and

its environment.
◮ A program/proof is modelled as a set of possible interactions.

Games form a very rich, expressive universe which can model a
variety of logics and programming languages very accurately.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 4 / 79



Algorithmic Game Semantics

◮ The name given by Abramsky to the study of decidability and
complexity properties of games models.

◮ Initiated by Ghica and McCusker in ICALP 2001’s Reasoning
about Idealised Algol using regular languages.

◮ Developed much further by Abramsky, Ghica, Murawski, Ong and
Walukiewicz.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 5 / 79



Prehistory of Game Semantics

The earliest precursor of game semantics is in the games-based
interpretations of logic studied by Lorenzen, Lorenz et al.

Proofs are modelled as dialogues between two characters: the verifier
V and the falsifier F.

For example, consider

∀x.∃y.x < y ∧ prime(y).

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 6 / 79



A dialogue

F tries to show the statement false by picking a value for x which
renders the statement

∃y.x < y ∧ prime(y)

false.

V responds by picking a value for y which he claims makes

x < y ∧ prime(y)

true.

F tries to show this false by picking one side of the conjunction which
he claims does not hold, and so on. . .

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 7 / 79



HO game semantics

We will be concerned with games in the style of Hyland and Ong.
Such games models have been used to build models for higher-order
programming languages with a variety of computational features:

◮ pure functional languages (PCF)
◮ mutable store (Idealized Algol)
◮ control operators (SPCF, exceptions)
◮ higher-order store (pointers)
◮ nondeterminism
◮ concurrency

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 8 / 79



Games

Computation = interaction between Opponent (O) and Player(P).

O vs P
Environment System

Context Program

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 9 / 79



Example: a first-order function

In a first-order function, the system consumes input and produces
output, while the environment produces input and consumes output.

A typical interaction of the successor function with its environment
might look like this.

◮ O: what is the output of this function?

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 10 / 79



Example: a first-order function

In a first-order function, the system consumes input and produces
output, while the environment produces input and consumes output.

A typical interaction of the successor function with its environment
might look like this.

◮ O: what is the output of this function?
◮ P: what is the input to this function?

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 10 / 79



Example: a first-order function

In a first-order function, the system consumes input and produces
output, while the environment produces input and consumes output.

A typical interaction of the successor function with its environment
might look like this.

◮ O: what is the output of this function?
◮ P: what is the input to this function?
◮ O: the input is 3.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 10 / 79



Example: a first-order function

In a first-order function, the system consumes input and produces
output, while the environment produces input and consumes output.

A typical interaction of the successor function with its environment
might look like this.

◮ O: what is the output of this function?
◮ P: what is the input to this function?
◮ O: the input is 3.
◮ P: the output is 4.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 10 / 79



Higher-Order Functions

The same ideas extend to model higher-order programs.

f : N → N ⊢ f(3) : N

◮ O: what is the result of this program?

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 11 / 79



Higher-Order Functions

The same ideas extend to model higher-order programs.

f : N → N ⊢ f(3) : N

◮ O: what is the result of this program?
◮ P: what is the output of the function f?

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 11 / 79



Higher-Order Functions

The same ideas extend to model higher-order programs.

f : N → N ⊢ f(3) : N

◮ O: what is the result of this program?
◮ P: what is the output of the function f?
◮ O: what is the input to f?

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 11 / 79



Higher-Order Functions

The same ideas extend to model higher-order programs.

f : N → N ⊢ f(3) : N

◮ O: what is the result of this program?
◮ P: what is the output of the function f?
◮ O: what is the input to f?
◮ P: the input to f is 3.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 11 / 79



Higher-Order Functions

The same ideas extend to model higher-order programs.

f : N → N ⊢ f(3) : N

◮ O: what is the result of this program?
◮ P: what is the output of the function f?
◮ O: what is the input to f?
◮ P: the input to f is 3.
◮ O: the output of f is 4.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 11 / 79



Higher-Order Functions

The same ideas extend to model higher-order programs.

f : N → N ⊢ f(3) : N

◮ O: what is the result of this program?
◮ P: what is the output of the function f?
◮ O: what is the input to f?
◮ P: the input to f is 3.
◮ O: the output of f is 4.
◮ P: the result of the program is 4.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 11 / 79



Abbreviated notation

We will draw such dialogues as follows.

f : N → N ⊢ f(3) : N

q

q

q

3

4

4

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 12 / 79



Abbreviated notation

The move q is a request for data, and the number-moves are the
supply of data.

Moves are written below the part of the type to which they correspond.

Time flows downwards.

Note how the O/P roles of the moves relating to f are the reverse of the
situation for the successor function.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 13 / 79



Multiple use of arguments

Programs may use their arguments more than once:

f : N → N ⊢ f(3) + f(0) : N

q

q

q

3

n

q

q

0

m

m + n

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 14 / 79



Nested use of arguments

Programs may nest uses of their arguments:

f : N → N ⊢ f(f(3)) : N

q

q

q

q

q

3

n

n

m

m

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 15 / 79



Not so simple. . .

We actually need more data than just the moves that are played.
Consider the terms

f : (N → N) → N ⊢ f(λx.f(λy.y))

and f(λx.f(λy.x))

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 16 / 79



Different terms, same plays

The games interpretations of these terms will both play as follows:

((N → N) → N) → N

q

q

q

q

q

q

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 17 / 79



Different terms, same plays

The Hyland-Ong approach to resolving this ambiguity is to augment
moves with justification pointers:

((N → N) → N) → N

q

q

q

q

q

q

We will restrict our attention to fragments of the model where these
pointers do not matter much, and so we ignore them in this lecture.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 18 / 79



A definition (almost)

A game is
◮ a set of moves M

◮ a labelling function λ : M → {O, P}

◮ further data which define (among other things) a set L ⊆ M∗ of
legal plays.

In a legal play:
◮ O goes first
◮ P and O take turns to move thereafter (the play is an alternating

sequence of moves).

Other rules can be imposed, depending on what kind of programs you
want to model.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 19 / 79



Types denote games

In a programming language, types are constraints on programs.

To say that a program P has type A implies that P’s behaviour is of a
certain kind.

Games prescribe a range of possible interactions between player and
opponent.

Types will be interpreted as games.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 20 / 79



Programs denote strategies

A program is modelled as a set of behaviours in the game
corresponding to the program’s type. This is what a strategy is.

A strategy σ for a game A is a set of legal plays of A such that:
◮ if s ∈ σ then s has even length: we only record those behaviours

where P has just responded to O’s move
◮ saa ′ ∈ σ ⇒ s ∈ σ

◮ saa ′ ∈ σ ∧ saa ′′ ∈ σ ⇒ saa ′ = saa ′′.

More constraints can be applied; we will gloss over these.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 21 / 79



Who wins? Who cares?

We are not concerned with who wins a game.

Winning corresponds to some kind of totality condition, saying that e.g.
the system can always respond. We wish to model all programs,
including nonterminating ones, so we ignore winning.

(On the other hand, when interpreting logic, winning is a central
concern: one only wants complete proofs.)

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 22 / 79



Building games: basic types

The game interpreting a base type like the natural numbers is a
two-move affair.

Opponent begins by asking for a number, and player may respond with
any number.

MN = {q, 0, 1, 2, . . .}

λN(q) = O

λN(n) = P

The only legal plays are those of the form

q · n.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 23 / 79



Building games: function types

Given games A and B we define A ⇒ B as follows.

MA⇒B = MA + MB, disjoint union

λA⇒B(b) = λB(b)

λA⇒B(a) =

{

O, if λA(a) = P

P, if λA(a) = O

A legal play of A ⇒ B is an alternating sequence s such that
◮ s ↾ B is legal in B

◮ s ↾ A is an interleaving of legal A-plays, and is itself an alternating
sequence.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 24 / 79



Building games: product types

Given games A and B we define A × B as follows.

MA×B = MA + MB

λA×B(a) = λA(a)

λA×B(b) = λB(b)

A legal play of A × B is an alternating sequence s such that
◮ s ↾ A is legal in A

◮ s ↾ B is legal in B

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 25 / 79



Interpreting programs

A program of the form
x : A, y : B ⊢ P : C

will be interpreted as a strategy for the game

A × B ⇒ C

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 26 / 79



An example

Here is a play which might arise in the strategy for the addition program

x : N, y : N ⊢ x + y : N.

N × N ⇒ N

q

q

3

q

4

7

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 27 / 79



Currying

Compare the previous play to the curried version:

N ⇒ (N ⇒ N)

q

q

3

q

4

7

They’re identical! This is important since it will let us interpret
λ-abstraction. . .

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 28 / 79



A category of games

We can now build a category:

Objects: games
Maps A → B: strategies for A ⇒ B

This will turn out to be a cartesian closed category, hence a model of
λ-calculus.

We can model specific programming languages by giving an
interpretation of their base types as games, and their constants as
strategies.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 29 / 79



Composition of strategies

“Parallel composition plus hiding”.

A =⇒ B =⇒ C

c1

c2

c3

b1

b2

b3

a1

σ τ

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 30 / 79



Multiple uses of arguments

What happens when we try to compose the successor function

I → (N ⇒ N)

q

q

n

(n + 1)

with the strategy for f(f(3))?

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 31 / 79



A reminder of f(f(3))

f : N → N ⊢ f(f(3)) : N

q

q

q

q

q

3

n

n

m

m

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 32 / 79



Promoting strategies

To perform this composition, we must say how the successor strategy
responds to repeated, nested use.

To do this we construct a repeatable version of the strategy using an
operation called promotion (cf. linear logic).

The promoted version of the strategy contains all legal interleavings of
ordinary plays from the original strategy (roughly).

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 33 / 79



A picture of the play

I =⇒ (N ⇒ N) =⇒ N

q

q

q

q

q

3

4

4

5

5

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 34 / 79



Composition = substitution

As usual for a categorical semantics, composition in the category
models substitution in the syntax.
Here we see that the semantics of

f(f(3))[succ/f]

is the same as the semantics of the program

5.

I hope this is not a surprise! (3 + 1 + 1 = 5).

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 35 / 79



Identity

A very important kind of strategy is the copycat strategy.

In a game of the form A ⇒ A, a copycat strategy works by copying O’s
moves: what O plays in one of the As, P plays in the other.

A ⇒ A

a1

a1

a2

a2

...

This is an identity for composition.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 36 / 79



The expressive power of games

We now have enough structure to model functional programming
languages.

However, the semantic universe of games goes beyond the functional
world:

◮ some programs which are equivalent in pure functional languages
are distinguished by the model

◮ many strategies which cannot be defined by pure functional
programs are available.

Hyland and Ong wanted a fully abstract model of PCF, so they
constrained the games model to get rid of non-functional behaviour.

We will embrace the bad behaviour, and end up with a very simple
model of a more expressive language.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 37 / 79



Intensionality of games

Strategies carry intensional (algorithmic) information which cannot be
detected in the purely functional world.

x : B ⊢ if x then x else x : B

q

q

b1

q

b2

b2

This is not the same as x : B ⊢ x : B, which is a copycat.

In an imperative language where x may be bound to a side-effecting
expression, this difference is vital.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 38 / 79



History-sensitivity = memory

Consider a strategy with the following two forms of play.

(i) (N ⇒ N) ⇒ N (ii) (N ⇒ N) ⇒ N

q q

q q

q n

m 2n + 1

n

2n

Behaviour like this can only be programmed using mutable store.

It turns out that considering a programming language which combines
functional and imperative programming gives rise to a very simple,
very accurate games model.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 39 / 79



Idealized Algol

Idealized Algol (IA) is Reynolds’s theoretical distillation of Algol 60. IA
can be seen as:

◮ a basic functional language extended with state
◮ x := 3
◮ !x
◮ new x in . . .

◮ alternatively, a basic imperative language extended with
◮ block structure (new)
◮ higher-order procedures (λ-calculus).

Either way, it is very expressive, elegant and powerful.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 40 / 79



Capturing programming intuition

Programmers in Algol-like languages have many intuitions about the
behaviour of programs.

◮ The use of local variables is invisible from outside a block: privacy,
modularity, representation independence.

◮ State changes are irreversible: there is no “snapback” construct

snapback(P)

which runs P and then undoes all its state-changes.

A good semantics should capture and formalize these intuitions, and
the program optimizations which they justify.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 41 / 79



Some program equivalences

Garbage collection If x does not occur free in P then

new x in P ∼= P.

No snapback

new x in P(x := 1); if !x = 1 then Ω else skip ∼= P(Ω)

Representation Independence

new x : bool in x := true; P(!x, x := ¬!x)

∼= new x : int in x := 1; P(!x > 0, x := −!x)

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 42 / 79



Syntax of IA

The language we will consider is a simply-typed λ-calculus with the
following base types.

◮ Expression types N, B, with the usual constants and operations,
including dereferencing of storage variables !x.

◮ The type comm of commands. Commands include assignment
x := M, sequential composition C1; C2, skip, and local blocks
new x in M.

◮ The type var of storage variables. Such variables are allocated
using new and manipulated via assignment and dereferencing.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 43 / 79



Semantics of base types

The expression types are interpreted as usual. For the natural
numbers:

q

0 1 2 . . .

(but note we are going to restrict to a finite set of values very soon.)

Commands are interpreted with a similar game:

run

done

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 44 / 79



Semantics of var

Variables have two kinds of initial move, for reading and for writing:

ok

write(0) write(1) write(2) . . . read

0 1 2 . . .

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 45 / 79



Some examples

x : var, y : var ⊢ x :=!y + 1 : comm

run

read

n

write(n + 1)

ok

done

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 46 / 79



Some examples

c : comm, x : var ⊢ x := 3; c; x :=!x + 1 : comm

run

write(3)

ok

run

done

read

n (n need not be 3)

write(n + 1)

ok

done

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 47 / 79



Bad variable behaviour

In the previous example, O must be allowed to respond to read with
any value, since the command c may later be bound to something like
x := 19.

If we wrap the command in a new x in . . ., this changes: the command
c cannot now access x, and nor can anything else.

The variable x is now a good variable.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 48 / 79



Variable allocation

The command new x in P is just like P, except that:
◮ x is bound to a storage cell, so P’s interactions with x have the

expected causal relationship between values written and values
read.

◮ The outside world can no longer see x.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 49 / 79



Semantics of allocation

In game semantics, variable allocation is handled by composition with
this strategy:

(var ⇒ comm) ⇒ comm

run

run

s

done

done

where s is any sequence of reads and writes for which the values read
match the last values written at all times.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 50 / 79



Allocation in action

comm =⇒ (var ⇒ comm) =⇒ comm

run

run

write(3)

ok

run

done

read

3

write(4)

ok

done

done

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 51 / 79



Allocation in action

This composition achieves two things:
◮ good variable behaviour is enforced.
◮ the interactions in the var type are hidden.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 52 / 79



A restricted IA

We will now focus on a restricted fragment of this language and its
model, in order to obtain a decidability result.

We consider only terms of the form

x1 : Θ1, . . . , xn : Θn ⊢ M : B

where B is a base type and the Θi are first-order types.

We do not handle general recursion, but we do include while-loops.

We assume a finite set of data-values.

For convenience, we assume all terms are β-normal, so there are no
λ-abstractions, and the only application terms we consider are those of
the form

xM1 . . .Mn.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 53 / 79



A theorem

For any program M in this language, the games model gives us a
strategy [[M]].

A strategy is a set of sequences over a finite alphabet, that is, a
language.

It turns out that for this fragment, the strategy [[M]] is a regular
language.

Therefore, program equivalence is decidable.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 54 / 79



Making game semantics tractable?

To establish the theorem, we describe the game semantics of this
fragment using a mildly extended syntax of regular expressions.

This not only gives us the decidability result, but also provides a syntax
for manipulating the model, which allows us to write concise proofs of
program equivalences.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 55 / 79



Extended regular expressions

We use an extended syntax of regular expressions, as follows.

Constants a (singleton), ǫ (empty string), ⊥ (empty language).

Standard operations R + S (union), R · S (concatenation), R∗

(repetition).

Intersection R ∩ S.

Hiding R \ α: delete all symbols in the set α.

Any such expression describes a regular language.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 56 / 79



Encoding of plays

We must make the disjoint union operation from game semantics
explicit. We annotate moves as follows:

x : N, f : N ⇒ N ⊢ f(x) : N

q

qf

q1

f

qx

nx

n1

f

mf

m

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 57 / 79



Denotation of terms

The strategy for a term

x1 : Θ1, . . . , xn : Θn ⊢ M : N

consists of a set of sequences of the form

q . . .n

We will give a set of regular languages ([M])n such that

[[M]] =
∑

n

q · ([M])n · n

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 58 / 79



Denotation of terms

For M : comm,
[[M]] = run · ([M]) · done.

For M : var,

[[M]] =
∑

n

read · ([M])read(n) · n

+
∑

n

write(n) · ([M])write(n) · ok

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 59 / 79



Constants

In the usual game semantics, [[n]] = {q · n} .
We define

([n])n = ǫ, ([n])m = ⊥ for m 6= n.

Similarly:
([skip]) = ǫ, ([Ω]) = ⊥.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 60 / 79



Variables

For variables x : N, the semantics is the copycat strategy

x : N ⊢ x : N

q

qx

nx

n

so we define
([x : N])n = qx · nx.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 61 / 79



More semantic definitions

([C; C ′]) = ([C]) · ([C ′])

([M + M ′])n =
∑

m+m ′=n

([M])m · ([M ′])m ′ .

([if B then C else C ′]) = ([B])true · ([C]) + ([B])false · ([C
′])

([while B do C]) = (([B])true · ([C]))
∗
· ([B])false

([V := M]) =
∑

n

([M])n · ([V])write(n)

([!V])n = ([V])read(n)

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 62 / 79



Semantics of Application

Given x : comm ⇒ comm ⇒ comm, M1, M2 : comm, we need to define
([xM1M2]).

Recall that in the semantics of x, after P plays runx, O may respond in
three different ways:

◮ O can call the first argument; when this argument is bound to M1,
this will lead to ([M1]) being played out

◮ O can call the second argument; this will lead to ([M2]) being
played

◮ O can give the answer donex, after which the whole program ends
with done.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 63 / 79



Semantics of Application

We therefore define

([xM1M2]) = runx · (run1
x · ([M1]) · done1

x + run2
x · ([M2]) · done2

x)∗ · donex.

Note that each argument may be called many times, or not at all, in
any order. This continues until donex is played.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 64 / 79



Semantics of allocation

Let X denote the set of symbols tagged with an x. Let Y be the rest of
the alphabet.
The regular language

G = Y∗ · (readx · 0x · Y∗)∗ · (
∑

n

write(n)x · okx · Y∗ · (readx · nx · Y∗)∗)∗

describes all those strings in which x has good-variable behaviour.
Now we can define

([new x in P]) = (([P]) ∩ G) \ X.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 65 / 79



Full abstraction theorem

Theorem

P ∼= Q ⇔ [[P]] = [[Q]] ⇔ ([P]) = ([Q]).

This follows from the original full abstraction theorem for the games
model of Idealized Algol.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 66 / 79



A simple example

([while true do C]) = (([true])true · ([C]))∗ · ([true])false

= (ǫ · ([C]))∗ · ⊥

= ⊥

= ([Ω]).

So while true do C ∼= Ω.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 67 / 79



Garbage collection

Let M be a program in which x does not occur free.

([new x in M]) = (([M]) ∩ G) \ X

= ([M])

since x is not free in M so no move of ([M]) is tagged with an x.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 68 / 79



No snapback

Let M be P(x := 1); if !x = 1 then Ω else skip.
We will show that new x in M ∼= P(Ω).

([x := 1]) = write(1)x · okx

([P(x := 1)]) = runP ·

(run1

P · write(1)x · okx · done1

P)∗ ·

doneP

([!x = 1])true = readx · 1x

([!x = 1])false =
∑

n6=1

readx · nx

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 69 / 79



No snapback, continued

([if !x = 1 then Ω else skip]) = ([!x = 1])true · ([Ω])

+ ([!x = 1])false · ([skip])

= ([!x = 1])true · ⊥ + ([!x = 1])false · ǫ

= ([!x = 1])false

=
∑

n6=1

readx · nx

Therefore

([M]) =
∑

n6=1

runP · (run1

P · write(1)x · okx · done1

P)∗ · doneP · readx · nx

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 70 / 79



No snapback, concluded

([M]) =
∑

n6=1

runP · (run1

P · write(1)x · okx · done1

P)∗ · doneP · readx · nx

We therefore have

([M]) ∩ G = runP · doneP · readx · 0x

([new x in M]) = (([M]) ∩ G) \ X = runP · doneP.

On the other hand, ([Ω]) = ⊥ so

([P(Ω)]) = runP · (run1

P · ⊥ · done1

P)∗ · doneP

= runP · doneP.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 71 / 79



Further results

Having established decidability of this fragment, there are some
obvious further questions:

◮ what is the complexity of program equivalence?
◮ what other fragments are decidable and what are their

complexities?

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 72 / 79



Beyond regular 1: recursion

Adding recursion (as opposed to just iteration) to the language takes
us out of the realm of regular languages.

Recursion = fixed point = the “infinite nesting” f ⊢ f(f(f(. . .))).

This arbitrary nesting of function calls is interpreted by arbitrarily deep
nesting of O-P move pairs, leading to strategies which are not regular
languages.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 73 / 79



Recursion is not regular

f : comm → comm ⊢ f(f(f(. . .))) : comm

run

run

run

run

run
...

run

done
...

done

done

done

done

done

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 74 / 79



Beyond regular 2: higher order

A similar problem comes up if we include second-order free variables:

f : (comm → comm) → comm ⊢ f(λx.x) : comm

run

run

run

run
...

Now Opponent can nest calls to f’s argument arbitrarily deeply.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 75 / 79



Pushdown automata

The languages corresponding to these larger fragments turn out to be
those expressible by certain kinds of pushdown automata:

◮ visibly pushdown automata for the higher-order fragment
◮ deterministic pushdown automata for recursion.

These discoveries were made by Murawski, Ong and Walukiewicz,
who established a complete characterization of the (sensible-looking)
decidable fragments of the language.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 76 / 79



Characterization of fragments

Iteration Ground recursion Higher recursion
Order 2 PSPACE DPDA —
Order 3 EXPTIME DPDA UND
Order 4 UND UND UND

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 77 / 79



Implementation

These semantic results provide us with a direct route to automated
verification: implement the game semantics and use the decision
procedure to check program equivalence.

Ghica, Bakewell and Dimovski have developed two tools:

GameChecker The first implementation, which generates a CSP
process corresponding to the game semantics of a
program and checks it for safety properties.

Mage A more sophisticated tool which uses lazy, on-the-fly
model construction.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 78 / 79



Conclusions

◮ Game semantics for imperative programming languages can be
relatively simple!

◮ A syntax of regular expressions allows us to work with the model
by hand.

◮ Accurate, flexible models like this allow us to establish decidability
and complexity results for program equivalence problems.

◮ Game semantics can be used as a basis for software model
checking.

G. McCusker (Bath) A games model of BI GAMES 2009, Udine 79 / 79


