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Background on finite model theory

Books

H.-D. Ebbinghaus and J. Flum
Finite Model Theory
Springer, 2nd edition, 2005

L. Libkin
Elements of Finite Model Theory
Springer, 2004



Why finite model theory?

• Connections with computation
• Computational complexity

logical description of complexity classes (e.g., the problem
P = NP amounts to the question whether two fixed-point
logics have the same expressive power in finite structures)

• Verification
finite structures can be used to describe finite runs of machines

• Database theory
the relational model identifies a database with a finite
relational structure (formulas of a formal language can be
viewed as programs to evaluate their meaning in a structure
and, vice versa, one can express queries of a certain
computational complexity in a given formal language)

• Genuinely finite queries
• Has the domain even cardinality?



Most theorems fail, one method survives

We focus our attention on first-order (FO) logic

• Results of model theory often do not apply to the finite

• Gödel’s completeness theorem

• Compactness theorem

• Löwenheim-Skolem theorem

• Definability and interpolation results

• etc. . .

• Ehrenfeucht-Fraïssé games are an exception



Compactness fails in the finite

• γn: “there are at least n distinct elements”
• γn

def
= ∃x1 · · · ∃xn

∧
16i<j6n(xi 6= xj)

• Γ = {γn | n > 0 }

• General case: every finite subset of Γ is satisfiable and thus
(compactness theorem) Γ is satisfiable, that is, it has an
(infinite) model

• Finite structures: every finite subset of Γ is satisfiable (it has
a finite model), but Γ has no finite model



An application

• Connectivity is not FO-definable over the class of all graphs
G = (G,E)

• The proof is via compactness
• Assume φ defines connectivity
• ψn: “there is no path of length n+ 1 from c1 to c2”
• Let T = {ψn | n > 0 } ∪ {c1 6= c2,¬E(c1, c2),φ}
• Every finite subset of T is satisfiable, but T is not

• Is connectivity definable over all finite graphs?



Isomorphic and elementarily equivalent structures

Definition (Isomorphic structures)
Two relational structures A, B, over the same finite vocabulary τ,
are isomorphic (A ∼= B) if there is an isomorphism from A to B,
that is, a bijection π : A 7→ B preserving relations and constants.

Theorem
Every finite structure can be characterized in first-order logic (FO)
up to isomorphism, that is, for every finite structure A there exists
a FO sentence ϕA such that, for every B, we have

B |= ϕA iff A ∼= B.

Definition (Elementarily equivalent structures)
Two structures A, B are elementarily equivalent (A ≡ B) if they
satisfy the same FO sentences.



m-equivalent structures

Quantifier rank qr(φ) of a FO-formula φ: maximum number of
nested quantifiers in φ:
• if φ is atomic then qr(φ) = 0;
• qr(¬φ1) = qr(φ1);
• qr(φ1 ∨ φ2) = max(qr(φ1), qr(φ2));
• qr(∃xφ1) = qr(φ1) + 1.

Example
φ = ∀x (P(x)→ ∃yQ(x,y) ∨ ∃yR(y)) has qr(φ) = 2.

Definition (m-equivalent structures)
Two structures A and B are m-equivalent, denoted A ≡m B,
with m > 0, if they satisfy the same FO sentences of quantifier
rank up to m.



Combinatorial Games

Ehrenfeucht-Fraïssé games are (logical) combinatorial games.

• Combinatorial games:
• Two opponents
• Alternate moves
• No chance
• No hidden information
• No loops
• The player who cannot move loses1

E. R. Berlekamp, J. H. Conway, and R. K. Guy
Winning Ways for your mathematical plays
A K Peters LTD, 2nd edition, 2001

1In Combinatorial Game Theory (CGT), this is called normal play (the
opposite rule: “the player who cannot move wins” is called misère play, and it
gives rise to quite different a theory)



Ehrenfeucht-Fraïssé games (EF-games)

• (Logical) combinatorial games
• The playground: two relational structures A and B (over the
same finite vocabulary)

• Two players: I (Spoiler) and II (Duplicator)
• Perfect information
• Move by I : select a structure and pick an element in it
• Move by II : pick an element in the opposite structure
• Round: a move by I followed by a move by II
• Game: sequence of rounds
• II tries to imitate I
• A player who cannot move loses



Basics

• Vocabulary: finite set of relation symbols
• A and B structures on the same vocabulary
• #—a = a1, . . . ,ak ∈ dom(A)

• #—

b = b1, . . . ,bk ∈ dom(B)

• Configuration: (A, #—a ,B,
#—

b ), with | #—a | = |
#—

b |

• It represents the relation { (ai,bi) | 1 6 i 6 | #—a | }

Definition
(A, #—a ,B,

#—

b ) is a partial isomorphism if it is an isomorphism of the
substructures induced by #—a and

#—

b , respectively.



Winning strategies

• A play from (A, #—a ,B,
#—

b ) proceeds by extending the initial
configuration with the pair of elements chosen by the two
players, e.g.,

• if I picks c in A
• and II replies with d in B
• then the new configuration is (A, #—a , c,B,

#—

b ,d)

• Ending condition: a player repeats a move or the configuration
is not a partial isomorphism

Definition
II has a winning strategy from (A, #—a ,B,

#—

b ) if every configuration
of the game until an ending configuration is reached is a partial
isomorphism, no matter how I plays.
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• II must respect the adjacency relation. . .
• . . . and pick nodes with the same label as I does
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Bounded and unbounded games

• Bounded game: Gm(A,B)

• the number of rounds is fixed: the game ends after m rounds
have been played

• Unbounded game: G(A,B)

• the game goes on as long as either a player repeats a move or
the current configuration in not partial isomorphism

• II wins if and only if the ending configuration is a partial
isomorphism

Unbounded games turn out to be useful to compare (finite)
structures (comparison games): the remoteness of an unbounded
game as a measure of structure similarity.



Main result

First-order EF-games capture m-equivalence

Theorem (Ehrenfeucht, 1961)
II has a winning strategy in Gm((A, #—a ,B,

#—

b )) if and only if (A, #—a)

and (B,
#—

b ) satisfy the same FO formulas of quantifier rank m and
at most | #—a | free variables, written (A, #—a) ≡m (B,

#—

b ).

Some simple consequences.

• If two structures A and B are m-equivalent for every natural
number m, then they are elementarily equivalent

• In finite structures, A and B are elementarily equivalent if and
only if they are isomorphic (in general, this is not the case:
consider, for instance, N and the ordered sum N / Z)



Correspondence between games and formulas

EF-games have a natural logical counterpart which is based on the
following simple properties of II winning strategies.

Given m > 0, two structures A and B, a tuple #—a of elements of A,
and a tuple

#—

b of elements of B, we have that:

• II wins G0((A, #—a ,B,
#—

b )) iff (A, #—a ,B,
#—

b ) is a partial
isomorphism

• for every m > 0, II wins Gm((A, #—a ,B,
#—

b )) iff
• for all a ∈ A, there exists b ∈ B such that II wins

Gm−1(A, #—a ,a,B,
#—

b ,b)
• for all b ∈ B, there exists a ∈ A such that II win

Gm−1(A, #—a ,a,B,
#—

b ,b)



From games to formulas: Hintikka formulas

Definition (Hintikka formulas)
Given a structure A and a tuple #—a of elements of A, let

ϕ0
(A, #—a)(

#—x )
def
=

∧
ϕ( #—x) atomic
(A, #—a)|=ϕ( #—x)

ϕ( #—x ) ∧
∧

ϕ( #—x) atomic
(A, #—a)|=¬ϕ( #—x)

¬ϕ( #—x )

and, for m > 0,

ϕm+1
(A, #—a)(

#—x )
def
=
∧
a∈A
∃xn+1ϕ

m
(A, #—a ,a)(

#—x , xn+1) ∧

∀xn+1
∨
a∈A

ϕm(A, #—a ,a)(
#—x , xn+1).

For each m, ϕm(A, #—a)(
#—x ) is the m-Hintikka formula.



From games to formulas: Hintikka formulas (cont.)

The Hintikka formula ϕ0
(A, #—a)(

#—x ) describes the isomorphism type
of the substructure of A induced by #—a .

In general, ϕm(A, #—a)(
#—x ) describes to which isomorphism types the

tuple #—a can be extended in m steps by adding one element in each
step. Since the vocabulary is finite, the above conjunctions and
disjunctions are finite even if the structure is infinite.

Theorem
For any given (A, #—a) and (B,

#—

b ), we have

(B,
#—

b ) |= ϕm(A, #—a)(
#—x ) ⇐⇒ (A, #—a) ≡m (B,

#—

b ) ⇐⇒

II has a winning strategy in Gm((A, #—a ,B,
#—

b )).



From games to formulas: Hintikka formulas (cont.)

A winning strategy for I in Gm(A,B) can be converted into a
first-order sentence of quantifier rank at most m that is true in
exactly one of A and B (the Hintikka formula ϕm(A, #—a)(

#—x ) or the
Hintikka formula ϕm

(B,
#—
b)

( #—x )).

A class K of structures (on the same finite vocabulary) is
FO-definable if and only if there is m ∈ N such that I has a winning
strategy whenever A ∈ K and B 6∈ K.



From differentiating formulas to games

• Let A and B be fixed
• Let φ be a formula with quantifier rank m
• Let A |= φ but B 6|= φ

• Repeat m times:

1 If φ = ∀x1ψ, let φ← ¬φ and swap A and B

• So, φ holds in A but not in B and its first quantifier is ∃
2 Let ψ← ψ{x1/c̄1}, with c̄1 a fresh constant symbol
3 Let I pick a1 in A such that (A,a1) |= ψ[c̄1/a1] (since A |= φ,

such an a1 must exist)
4 Whatever b1 II chooses in B, (B,b1) 6|= ψ[c̄1/b1]

5 Let A← (A,a1), B← (B,b1) and φ← ψ

• Switching between models is encoded in φ as quantifier
alternations



Example
Consider the formula for density:
φ = ∀x1∀x2∃x3 (x1 < x2 → x1 < x3 < x2),
which holds in (Q,<) but not in (Z,<).

1 ∃x1∃x2∀x3 (x1 < x2 ∧ ¬(x1 < x3 < x2))

2 I chooses z in (Z,<)

3 (Z,<, z) |= ∃x2∀x3 (c̄1 < x2 ∧ ¬(c̄1 < x3 < x2)) [c̄1/z]

4 II replies q in (Q,<)

5 I chooses z+ 1 in (Z,<)

6 (Z,<, z, z+1) |= ∀x3 (c̄1 < c̄2∧¬(c̄1 < x3 < c̄2)) [c̄1/z, c̄2/z+1]

7 II replies with q ′ > q in (Q,<) (otherwise it loses
immediately)

8 I chooses q
′−q
2 in (Q,<)

9 (Q,<,q,q ′, q
′−q
2 ) |= c̄1 < c̄2 → c̄1 < c̄2 <

c3 [c̄1/q, c̄2/q ′, c̄3/(q
′−q
2 )]



Winning vs. optimal strategies

Winning strategy 6= Optimal strategy

The distinction between winning and optimal strategies is essential
in unbounded games:

• In unbounded EF-games on finite structures, I wins
unless A ∼= B

• “Play randomly” is a winning strategy for I
• But, how far actually is the end of a game?
• What are the best moves for I (and II )?



Remoteness

Optimal strategies (in combinatorial games) can be characterized in
terms of remoteness:

• Current player has no legal moves from (the current
configuration of) G ⇒ rem(G) = 0

• Current player can move to a configuration with even
remoteness ⇒ rem(G) = 1 + least even remoteness

Win Quickly!

• Current player can only move to configurations with odd
remoteness ⇒ rem(G) = 1 + greatest odd remoteness

Lose Slowly!

• The parity of the remoteness tells the winner



Win quickly, lose slowly!

Remoteness in EF-games:

• For EF-games, remoteness in terms of rounds, not moves
• Remoteness of G: the minimum m such that I wins Gm
(simplified definition under the hypothesis A 6∼= B)

• Optimal I ’s move: given a configuration G, a move by I is
optimal if and only if, whatever II replies, the remoteness of
the resulting configuration is less than or equal to rem(G) − 1.

• Optimal II ’s move: given a configuration G and a move by I ,
a reply by II is optimal if and only if the remoteness of the
resulting position is

• rem(G) − 1, if I ’s move is optimal
• rem(G), otherwise



Applications of EF-games

EF-games have been exploited to prove some basic results about
first-order logic:
• Hanf’s theorem
• Sphere lemma
• Gaifman’s theorem

EF-games have been extensively used to prove negative expressivity
results (sufficient conditions suffice)
• Gaifman’s theorem and normal forms for first-order logic



Gaifman graph
• Gaifman graph G(A) of a structure A: undirected
graph (dom(A),E) where (a,b) ∈ E iff a and b occur in the
same tuple of some relation of A

• the degree of a node a is the number of nodes b( 6= a) such
that (a,b) ∈ E (the degree of G is the maximum of the
degrees of its nodes)

• δ(a,b): length of the shortest path between a and b in G(A)

Example
A = ({a,b, c,d},R,S), R = {(a,b)}, S = {(b, c,d)}
δ(a, c) = δ(a,d) = 2

a b

cd



r-sphere and r-neighborhood

Definition (r-sphere)
Let A be a structure with domain A, a ∈ A, and r ∈ N. The
r-sphere of a (in A), denoted SA

r (a), is defined as follows:

SA
r (a)

def
= {b ∈ A | δ(a,b) 6 r }.

The notion of r-sphere can be extended to a vector #—a = a1 . . .as
(r-sphere SA

r ( #—a)):

SA
r ( #—a)

def
= {b ∈ A | δ( #—a ,b) 6 r } = SA

r (a1) ∪ . . .SA
r (as).

Definition (r-neighborhood)
The r-neighborhood NA

r ( #—a) is the substructure of A induced by
SA
r ( #—a).



Hanf’s theorem

• A�r B: there is a bijection f : A→ B such that
NA
r (a) ∼= NB

r (f(a)) for every a ∈ A.

Theorem (Hanf, 1965)
Let A and B be two structures such that for any r ∈ N, each
r-sphere in A or B contains finitely many elements. Then, A

and B are elementarily equivalent if A�r B for every r ∈ N.

• Hanf’s result does not hold if the Gaifman graph of (at least)
one structure has infinite degree, e.g., the usual ordering
relation on natural numbers

• Hanf’s theorem is of interest only for infinite structures: two
finite structures are elementarily equivalent if and only if they
are isomorphic



Sphere theorem

• A�tr B: isomorphic r-neighborhoods occur the same number
of times in both structures or they occur more than t times in
both structures

Theorem (Sphere theorem)
Given A and B with degree at most d and m ∈ N, if A�tr B for
r = 3m and t = m · d3m+1

, then A ≡m B.

• For all m there are r and t such that �tr is finer than ≡m
with respect to the class of structures with degree 6 d

• Strong hypotheses (it is a sufficient condition)
• isomorphic neighborhoods
• uniform threshold for all neighborhood sizes
• scattering of neighborhoods is not taken into account

• Hanf’s and Sphere Theorems proofs use EF-games



References for Hanf’s and Sphere theorems

W. Hanf
Model-Theoretic Methods in the Study of Elementary Logic
The Theory of Model, 1965

W. Thomas
On logics, tilings, and automata
ICALP’91, 1991

W. Thomas
On the Ehrenfeucht-Fraïssé game in Theoretical Computer
Science
LNCS 668, 1993

R. Fagin, L. J. Stockmeyer, and M. Y. Vardi
On monadic NP vs monadic co-NP
Information and Computation, 1995



Gaifman’s theorem

• r-local formula: has “bounded” quantifiers:

∃y (δ( #—x ,y) 6 r∧ φ)

∀y (δ( #—x ,y) 6 r→ φ)

• δ( #—x ,y) 6 r is FO-definable
• existentially r-local sentence:

∃x1 · · · ∃xs
( ∧
16i<j6s

δ(xi, xj) > 2r∧
∧

16i6s

φ
(i)
r (xi)

)

where φ(i)
r are r-local

Theorem (Gaifman’s theorem)
Every first-order sentence is logically equivalent to a boolean
combination of existentially local sentences.



Remarks on Gaifman’s theorem

• Gaifman’s normal form is effective
• Gaifman’s proof uses EF-games to prove the invariant

NA
7m−i−1(a1 · · ·ai) ≡f(i) NB

7m−i−1(b1 · · ·bi)

• r-local formulas with r 6 7qr(φ)

• f(i)-equivalence instead of isomorphism
• first-order logic can only talk of scattered small substructures
• first-order logic can only express local properties



Expressive Power of First-Order Logic

First-order logic is at the same time
• too strong

• any finite structure can be defined (up to isomorphism)
• too weak

• natural properties cannot be expressed (such as, for instance,
“the domain has even cardinality”)

Weak does not necessarily mean bad
“weak expressive power can also be a good thing, as it implies
transfer of properties across different situations. In non-standard
arithmetic, one computes in the structure N / Z using the infinite
numbers to simplify calculations, and then transfers the outcome
back to N, provided it is a first-order statement about <.” (van
Benthem’s course on logical games, Chapter 2,“Model Comparison
Games”)



The EF-problem

Definition
The EF-problem is the problem of determining whether II has a
winning strategy in Gm(A,B), given A, B and an integer m.



Sufficient conditions

Corollary (of Ehrenfeucht-Fraïssé’s theorem)
A class K of structures is not FO-definable if and only if, for all
m ∈ N, there are A ∈ K and B 6∈ K such that II has a winning
strategy in Gm(A,B).

• Sufficient conditions allow us to prove negative expressivity
results

Example
Let Lk

def
= ({1, . . . ,k},<). It is known that

n = p or n,p > 2m − 1⇒ II wins Gm(Ln,Lp)

“The class of linear orderings of even cardinality is not
FO-definable”: given m, choose ñ = 2m and p̃ = 2m + 1; II wins
Gm(Lñ,Lp̃) (i.e., Lñ ≡m Lp̃).



A library of sufficient conditions

R. Fagin and L. J. Stockmeyer and M. Y. Vardi
On monadic NP vs monadic co-NP
Information and Computation, 1995

T. Schwentick
On winning Ehrenfeucht games and monadic NP
Annals of Pure and Applied Logic, 1996

S. Arora and R. Fagin
On winning strategies in Ehrenfeucht-Fraïssé games
Theoretical Computer Science, 1997

H. J. Keisler and W. B. Lotfallah
Shrinking games and local formulas
Annals of Pure and Applied Logic, 2004



Arora and Fagin’s condition

• “Approximately” isomorphic neighborhoods
• Still based on a multiplicity argument
• Neighborhoods must be tree-like structures

Definition (simplified for directed graphs)

• The (m, 0)-color of an element a is its label plus a description
of whether it is a constant and whether it has a self-loop

• the (m, r+ 1)-color of a is its (m, r)-color plus a list of triples,
one for each possible (m, r)-color τ:

1 the number of elements b with (m, r)-color τ such that
E(a,b) but not E(b,a), counted up to m

2 the number of elements b with (m, r)-color τ such that
E(b,a) but not E(a,b), counted up to m

3 the number of elements b with (m, r)-color τ such that
E(a,b) and E(b,a), counted up to m



Arora and Fagin’s condition (cont.)

Let the color of a directed edge be the ordered pair of colors of its
nodes.

Theorem
Let A = (A,E) and B = (B,E) be two structures of degree at
most d, and let m ∈ N. If
• there is a bijection f : A→ B such that a and f(a) have the
same (m, r)-color, with r = 32m, for all a ∈ A,

• A and B do not have (undirected) cycles of length less than r,
• whenever EA(a,b) holds but EB(f(a), f(b)) does not hold, or
vice versa, then there are at least dr edges in both structures
having the same (m, r)-color as (a,b), (resp., (f(a), f(b))),

then II has a winning strategy in Gm(A,B).



Applications of Arora and Fagin’s condition

• Directed reachability is not in monadic Σ11 (a simpler proof of
Ajtai and Fagin’s result)

• Graph connectivity is not in monadic Σ11
• Both results can be shown to hold even if the vocabulary is
expanded with particular built-in relations of degree no(1),
where n is the size of the structure

• The requirement of the absence of small cycles can be relaxed
at the expense of adding further hypotheses



Schwentick’s extension theorem

Schwentick’s work moves from the following question: Under which
conditions can a “local” strategy be extended?

He develops a method that allows, under certain conditions, the
extension of a winning strategy for II on some small parts of two
finite structures to a global winning strategy.

• The structures must be isomorphic except for some small
parts, for which local winning strategies exist by hypothesis

• The advantage is that there are no further constraints, either
on the degree or on the internal characteristics of the
substructures.



Schwentick’s extension theorem (cont.)

• Let C and D be subtructures of A and B, respectively
• Suppose that II has a winning strategy in Gm(C,D) for
some m

• II has a winning strategy in Gm(A,B) if
1 II’s strategy for Gm(C,D) can be extended to a winning

strategy in Gm(NA
2m(C),NB

2m(D)), so that, at every round the
two chosen elements have the same distance from C and D,
respectively

2 there is an isomorphism α : (A \ C)→ (B \D) such that
δ(x,C) = δ(α(x),D) for all x ∈ NA

2m(C) \ C



Proof’s idea

• Divide the domains of the structures into three regions:
• inner area: I = C ∪D
• outer area: O = (A \ NA

2m(C)) ∪ (B \ NB
2m(D))

• the area in between
• At each round, the inner or outer areas may grow, according to
the played moves

• Separation invariant: after round i the distance from every
element in the inner area and every element in the outer area
is greater than 2m−i

• So, the winning strategy for II is guaranteed by the
isomorphism α in the outer area, and by the extended winning
strategy in the inner area and the area in between



Extensions

• different distance functions can be used
• winning strategies for several pairs of substructures can be
combined

• The separation invariant may be required for some relations,
but not for others (e.g., linear ordering), by adding a kind of
homogeneity condition that guarantees that elements in the
inner and outer areas behave in the same way with respect to
the relations that do not satisfy the separation invariant



Applications of Schwentick’s extension theorem

• Connectivity of finite graphs is not expressible in monadic Σ11
in the presence of built-in relations of degree no(1) (the same
result as Arora and Fagin’s) or even in the presence of a
built-in linear ordering

• Monadic Σ11 with a built-in linear ordering is more expressive
than monadic Σ11 with a built-in successor relation



Shrinking games

• Similar to Schwentick’s extension theorem, but it works in the
opposite direction, by shrinking the playground according to a
sequence of “scattering parameters”

• The authors use Ehrenfeucht–Fraïssé type games with a
shrinking horizon between structures to obtain a spectrum of
normal form theorems of the Gaifman type

• They improve the bound in the proof of Gaifman’s theorem
from 7qr(φ) to 4qr(φ) and they provide bounds for other
normal form theorems



Shrinking games

• Let #—s = s0, s1, . . . a possibly infinite sequence of natural
numbers, called scattering parameters

• The sequence of local radii associated to #—s is defined as
follows:

r0 = 1
rn+1 = 2rn + sn

• A set C is s-scattered if δ(a,b) > s for all distinct a,b ∈ C
• A sequence #—s shrinks rapidly if 2rj 6 sj for all j
• Given #—s = s0, s1, . . . that shrinks rapidly, if C is sj-scattered
then the rj-neighborhood around any c ∈ C does not contain
any other element of C



Shrinking games: local rounds

Let #—s = s0, s1, . . . be a sequence that shrinks rapidly

Definition ( #—s -shrinking game)
Given A and B and m ∈ N, the m-round #—s -shrinking game is as
follows:
• I chooses 1 6 i < m and plays either a local or a scattered
round

• a local round is played as follows (assuming that I plays in A):
1 I chooses a ∈ NA

ri+si
( #—a)

2 II replies with b ∈ NB
ri+si

(
#—

b )



Shrinking games: scattered rounds

• a scattered round is played as follows:
1 I chooses a non-empty set of si-scattered elements
C ⊆ NA

ri
( #—a) such that II has a winning strategy in each i

round (s0, . . . , si−1)-shrinking game from (A, c,A,d) for
c,d ∈ C (if | #—a | = 0 then I chooses m− i elements in A)

2 II replies with a non empty set of si-scattered elements
D ⊆ NB

ri
(

#—

b ) such that |C| = |D|

3 I chooses d ∈ D
4 II chooses c ∈ C
5 the position is extended with (c,d) and i rounds are left

• The ending and winning conditions are as in standard EF-game

Theorem
Let m ∈ N and let #—s = s0, s1, . . . be a sequence that shrinks
rapidly. If II has a winning strategy in the m-round #—s -shrinking
game for A and B then II has a winning strategy in Gm(A,B).



Sufficient vs “iff” conditions

Lk
def
= ({1, . . . ,k},<)

It is known that

n = p or n,p > 2m − 1⇒ II wins Gm(Ln,Lp).

• Given L5 and L6, does II win G3(L5,L6)?

In fact,

n = p or n,p > 2m − 1⇔ II wins Gm(Ln,Lp)

• Given L5 and L6, does II win G3(L5,L6)? No!
• Complete characterizations are needed to exploit games
algorithmically



Solving Games

Example

n = p or n,p 6 2m − 1⇔ II wins Gm(Ln,Lp)

Assume n < p. Then:
1 The remoteness can be computed as:

rem(G(Ln,Lp)) = blog(n+ 1)c+ 1

2 A move of I from G(Ln,Lp) is optimal if and only if I picks
• an element in [bn/2c+ 1,p− bn/2c− 1] in Lp, or
• (n− 1)/2 in Ln, if n is odd

3 Similarly, the set of II’s optimal replies can be computed



Complexity results

B. Khoussainov and J. Liu,
On Complexity of Ehrenfeucht-Fraïssé Games
LFCS, 2007, Annals of Pure and Applied Logic, in press

A. Montanari and A. Policriti and N. Vitacolonna,
An Algorithmic Account of Winning Strategies in Ehrenfeucht
Games on Labeled Successor Structures
LPAR, 2005

E. De Maria, A. Montanari, N. Vitacolonna,
Games on Strings with a Limited Order Relation
LFCS, 2009

E. Pezzoli,
Computational Complexity of Ehrenfeucht-Fraïssé Games on
Finite Structures
CSL, 1998



EF-games on specific classes

• Equivalence relations (with/without colors)
• Embedded equivalence relations
• Trees (with level predicates)
• Labelled successor structures
• Labelled linear structures with a bounded ordering



Equivalence relations: local strategy

Definition
Structures A = (A,E), where E is an equivalence relation on A.

Definition

• For m,n, t ∈ N, m =t n iff m = n or both m,n > t
• (A, #—a ,B,

#—

b ) is t-locally safe iff #—a → #—

b is a partial
isomorphism and |[ai]| =t |[bi]| for all ai ∈ #—a .

When a position is t-locally safe, there is not incentive for I to play
in a class that has already been chosen, in a game with at most t
rounds.

1-locally safe, but not 2-locally safe



Equivalence relations: “small disparity”
• q(A, #—a)

t : number of classes of size t in A not containing any ai
(free classes)

• Let ∆(A, #—a)

(B,
#—
b)

= { t | q
(A, #—a)
t 6= q

(B,
#—
b)

t }

• Let qt = min{q(A, #—a)
t ,q(B,

#—
b)

t }

Lemma
Given (A, #—a ,B,

#—

b ) and t ∈ ∆(A, #—a)

(B,
#—
b)

, I can reach a position that is
not t-locally safe after qt + 1 rounds.

Corollary
I has a winning strategy in at most qt + 1 + t rounds,
with t ∈ ∆(A, #—a)

(B,
#—
b)

.

• I selects qt distinct classes of size t (“global” moves)
• Then, he plays one more “global” move in a class of size t to
which II cannot reply “appropriately”

• Then, he plays t rounds in the same class (“local” moves)



Example

• 2-locally safe, but not 3-locally safe

t q
(A,a)
t q

(B,b)
t

1 0 2
2 2 1
3 1 1
4 0 0
5 1 0

• ∆(A,a)
(B,b) = {1, 2, 5}

A B

a

b



Example (cont.)

• ∆(A,a)
(B,b) = {1, 2, 5}

• q1 = 0, q2 = 1, q5 = 0

• 1 ∈ ∆(A,a)
(B,b) ⇒ I can reach a not

1-locally safe configuration in
q1 + 1 = 1 round

• 2 ∈ ∆(A,a)
(B,b) ⇒ I can reach a not

2-locally safe configuration in
q2 + 1 = 2 rounds

• 5 ∈ ∆(A,a)
(B,b) ⇒ I can reach a not

5-locally safe configuration in
q5 + 1 = 1 round

A B

a

b
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A B
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Equivalence relations: “large disparity”

• q(A, #—a)
>t : number of free classes of size > t

• Let Γ (A, #—a)

(B,
#—
b)

= { t | q
(A, #—a)
>t 6= q

(B,
#—
b)

>t }

• Let q>t = min{q(A, #—a)
>t ,q(B,

#—
b)

>t }

Lemma
Given (A, #—a ,B,

#—

b ) and t ∈ Γ (A, #—a)

(B,
#—
b)

, I can reach a position that is
not t-locally safe after q>t rounds.

Corollary
I has a winning strategy in at most q>t + t rounds,
with t ∈ Γ (A, #—a)

(B,
#—
b)

.

• I selects q>t distinct free classes of size > t (“global” moves)
• Then, only one structure remains with a free class of size > t
• I plays t rounds in that class (“local” moves)



Example

• Initially, empty configuration
• Let t = 3
• Then q>t = 1
• let I pick a free class with > t
elements

• II replies accordingly
• Now there is a free class of size > t
only in A

• II replies with a “small” class
• I starts to play locally
• II must reply locally
• I wins
• q>t + t rounds needed

A B
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A B
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Example

• Initially, empty configuration
• Let t = 3
• Then q>t = 1
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Equivalence relations: characterization

Definition
Given (A, #—a ,B,

#—

b ) and m ∈ N, (A, #—a ,B,
#—

b ) is m-globally safe iff

• qt > m− t− 1 for all t ∈ ∆(A, #—a)

(B,
#—
b)

• q>t > m− t for all t ∈ Γ (A, #—a)

(B,
#—
b)

Theorem
II wins Gm(A, #—a ,B,

#—

b ) iff (A, #—a ,B,
#—

b ) is m-locally safe
and m-globally safe.

Corollary
The remoteness of G(A, #—a ,B,

#—

b ) is

min
{
min { t+ q>t | t ∈ Γ (A, #—a)

(B,
#—
b)

}, 1 + min { t+ qt | t ∈ ∆(A, #—a)

(B,
#—
b)

}
}
.

The remoteness can be computed in O(|A| + |B|) time and space.



Sketch of the proof

Theorem
II wins Gm(A, #—a ,B,

#—

b ) iff (A, #—a ,B,
#—

b ) is m-locally safe
and m-globally safe.

• If a position is m-locally safe and I play a local move, then II
can reach a position (m− 1)-locally safe

• If a position is m-globally safe, then II can reach a position
(m− 1)-globally safe

• The only tricky case is when I chooses an element in a free
class of size t ∈ ∆(A, #—a )

(B,
#—
b )

or t ∈ Γ (A, #—a )

(B,
#—
b )

• But, m-global safety allows II to reply properly

• The result easily extends to structures colored homogenously,
i.e., if E(x,y) then x ∈ P ⇔ y ∈ P, for all x,y ∈ A and unary
predicate P



Equivalence structures with one color

Definition
Structures A = (A,E,P), where E is an equivalence relation on A
and P is a unary predicate.

Definition

• Let P[ai] be the set of elements aj ∈ [ai], with aj 6= ai, such
that P(aj) holds (“aj is colored”)

• Define ¬P[ai] similarly
• (A, #—a ,B,

#—

b ) is t-locally safe iff #—a → #—

b is a partial
isomorphism and |P[ai]| =t |P[bi]| and |¬P[ai]| =t |¬P[bi]| for
all ai ∈ #—a

• q(A, #—a)
τ : number of “equivalent” free classes of (A, #—a) of “type
τ”

• Let ∆(A, #—a)

(B,
#—
b)

= { τ | q
(A, #—a)
τ 6= q

(B,
#—
b)

τ }



Embedded equivalence structures: local strategy

Definition
Structures A = (A,E1, . . . ,Eh) where each Ei is an equivalence
relation on A and Ei ⊆ Ej for i < j.

• We consider the case h = 2
• Let A = (A,E1,E2) and B = (B,E1,E2)

Definition
A local game on (A, #—a ,B,

#—

b ) is a game played only within non-free
equivalence classes, i.e., classes containing some ai ∈ #—a or bi ∈

#—

b .

Definition
(A, #—a ,B,

#—

b ) is t-locally safe iff II has a winning strategy in the
t-round local game on (A, #—a ,B,

#—

b ).

• t-round local games are characterized as in “flat” equivalence
games



Embedded equivalence structures: global strategy

Definition

• Type of an E2-class X of A: tp(X) = (q1, . . . ,q|X|), where qk
is the number of E1-classes of size k contained in X

• tp(X) ≡t tp(Y) iff II wins Gt((X,E1 � X), (Y,E1 � Y))

• (Free) t-multiplicity of type σ in (A, #—a):

q
(A, #—a)
σ,t

def
=
∣∣ { Y | Y is a free E2-class of (A, #—a) ∧ tp(Y) ≡t σ }

∣∣
• ∆(A, #—a)

(B,
#—
b)

= { (σ, t) | q
(A, #—a)
σ,t 6= q

(B,
#—
b)

σ,t }

Lemma
Given (A, #—a ,B,

#—

b ) and (σ, t) ∈ ∆(A, #—a)

(B,
#—
b)

, I has a winning strategy

in min{q(A, #—a)
σ,t ,q(B,

#—
b)

σ,t } + 1 + t rounds.



Trees with height h

Definition
A tree T is a pair (T ,6) where

1 6 is a partial ordering with a unique minimum
2 for all x ∈ T , {y | y 6 x } is finite and linearly ordered
3 maximal elements are leaves
4 Level of a node: distance from the root
5 Height of T: number of levels −1

• Kh: class of trees of height h
• x 6 y iff x is an ancestor of y
• The idea of Khoussainov and Liu’s paper is to map Kh into
the class of embedded equivalence relations of height h

• Sounds nice!
• Unfortunately, it does not work (without a level predicate)



Mapping trees onto embedded equivalences

• T ′ def= T ∪ { (x,ax) | x is a leaf of T }

• E1: minimal equivalence containing { (x,ax) | x is a leaf of T }

• Ei+1: minimal equivalence containing
Ei ∪ (T1 × T1) ∪ · · · ∪ (Tk × Tk), where T1, . . . , Tk are the
subtrees rooted at nodes of level h− i+ 1

• Ei ⊆ Ei+1 (Ei is finer than Ei+1)
• Embedded equivalence structure induced by T:

A(T)
def
= (T ′,E1, . . . ,Eh)

Claim

1 T1 ∼= T2 iff A(T1) ∼= A(T2) (ok!)
2 II wins Gm(T1,T2) iff II wins Gm(A(T1),A(T2)) (wrong!)



Why it does not work

Claim (wrong)
II wins Gm(T1,T2) iff II
wins Gm(A(T1),A(T2)).

• Observe that x 6 y iff
x has level t, y has
level s 6 t and
Eh−t+1(x,y) H

5
4
3
2
1
0

a

b c

T1

K

4
3
2
1
0

a ′

b ′ c ′

T2



Binary trees

K. Doets
On n-Equivalence of Binary Trees
Notre Dame Journal of Formal Logic, 1987

This note presents a simple characterization of the class
of all trees which are n-elementary equivalent with Bm:
the binary tree with one root all of whose branches have
length m (for each pair of positive integers n and m).
[. . . ] Section 2 introduces the class Q(n) of binary trees
and proves that every tree in it is n-equivalent with Bm
whenever m > 2n − 1. Section 3 shows that, conversely,
each n-equivalent of a Bm with m > 2n − 1 belongs to
Q(n). Finally, all n-equivalents of Bm for m < 2n − 1
are isomorphic to Bm.



Labelled successor structures (LSS)

• Let Σ be a finite alphabet
• Let u ∈ Σ∗ be a word on Σ
• Let u[i] be the ith letter of u

Definition
A (labelled) successor structure is a pair (u,

#—

i ), where the
elements of

#—

i are distinguished indices of u.
Successor structures (u,

#—

i ) interpret FO-formulas φ( #—x ) in the
vocabulary (=, s, (Pa)a∈Σ) according to the following rules:

(u,
#—

i ) |= xh = xl if ih = il;

(u,
#—

i ) |= s(xh, xl) if il = ih + 1;

(u,
#—

i ) |= Pa(xh) if u[ih] = a.



Local conditions

η(i, j) =

{
j− i if |i− j| 6 d;∞ otherwise.

Definition
A configuration (u,

#—

i , v,
#—

j ) is t-locally safe iff, for all ih, il ∈
#—

i ,
1 η2t(ih, il) = η2t(jh, jl)
2 Nu2t−1(ih) = Nv2t−1(jh)

• If a configuration is not t-locally safe, I has a “local” winning
strategy in t rounds

• II can turn a t-locally safe configuration into a (t− 1)-locally
safe configuration if I plays “locally”



Local safety: an example

Not 2-locally safe:

a

1

b

2

b

3

b

4

a

5

b

6

b

7

a

8

b

9

a

10

a

11

b

12

u

a

1

b

2

b

3

b

4

a

5

b

6

b

7

a

8

b

9

b

10

b

11

a

12

b

13

a

14

a

15

b

16

v

2-locally safe:

a

1

b

2

b

3

b

4

b

5

a

6

b

7

b

8

a

9

a

10

b

11

a

12

a

13

b

14

b

15

a

16

b

17

u

a

1

b

2

b

3

b

4

a

5

b

6

b

7

a

8

b

9

b

10

b

11

a

12

a

13

b

14

a

15

a

16

b

17

b

18

a

19

b

20

v



Free factors

Definition

• Let α be a word of length 2t − 1
• An occurrence of α centered at index k in (u,

#—

i ) is free iff
|k−

#—

i | > 2t−1

• (Free) multiplicity of α in (u,
#—

i ): number of free occurrences
of α in (u,

#—

i )

• Scattering of α in (u,
#—

i ): cardinality of a maximal
2t-scattered subset of the free occurrences of α in (u,

#—

i )

• (A set X ∈ N is d-scattered iff |x− y| > d for all x,y ∈ X)



Multiplicity and scattering: an example

a

1

b

2

a

3

b

4

a

5

b

6

a

7

b

8

b

9

a

10

b

11

a

12

b

13

a

14

a

15

b

16

a

17

u

α = aba qα = 2

aba

aba

aba aba

aba

aba

2qα 2qα

• Let α = aba (t = 2)
• Centers of free occurrences of aba in (u, 9): {2, 4, 6, 13, 16}
• Multiplicity: 5
• Scattering: 2 ({2, 4, 6}, {13, 16})



LSS: Characterization

• Let p(u,
#—
i )

α denote the free multiplicity

• Let q(u,
#—
i )

α denote the scattering

• Let ∆(u,
#—
i )

(v,
#—
j )

= {α | p
(u,

#—
i )

α 6= p
(v,

#—
j )

α ∨ q
(u,

#—
i )

α 6= q
(v,

#—
j )

α }

• ∆(u,
#—
i )

(v,
#—
j )

is the set of words that I can potentially exploit in
order to win

• Let qα = min{q(u,
#—
i )

α ,q(v,
#—
j )

α }

Definition
A configuration (u,

#—

i , v,
#—

j ) is m-globally safe iff

qα > m− log2(|α| + 1) for all words α ∈ ∆(u,
#—
i )

(v,
#—
j )

.

Theorem
II has a winning strategy in G = Gm(u,

#—

i , v,
#—

j ) iff G is m-locally
safe and m-globally safe.



Example

a

1

b

2

b

3

b

4

b

5

a

6

b

7

b

8

a

9

a

10

b

11

a

12

a

13

b

14

b

15

a

16

b

17

u

a

1

b

2

b

3

b

4

a

5

b

6

b

7

a

8

b

9

b

10

b

11

a

12

a

13

b

14

a

15

a

16

b

17

b

18

a

19

b

20

v

α p
(u,6,11)
α p

(v,5,14)
α q

(u,6,11)
α q

(v,5,14)
α

q = 1 a 4 5 4 5
b 7 9 4 5

q = 2 abb 2 3 2 3
bab 1 2 1 2
bba 1 2 1 2
bbb 1 1 1 1

It is also 2-globally safe!



Definability and m-equivalence

L Definable class m-equivalence

FO(s) threshold locally testable Previous theorem

• From FO(s) to FO(<):

FO(<p), where x <p y⇔ 0 < y− x 6 p.

L Definable class m-equivalence

FO(<) ∗-free <p, with p→∞



Testing ≡m with generalized suffix trees
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a
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a
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a
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$

bb
a
a
ba

a
bba
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bb
a
bbba

a
ba

a
bba

b$

a
b

a
a
bba

b$

a
ba

a
bba

b$

b
bba

a
ba

a
bba

b$

u,17
v,20

u,2

u,3 v,2

v,9

u,7
v,10

u,14
v,17

u,4 v,3

v,6

u,8
v,11

u,11
v,14

u,15
v,18

u,5 v,4

v,7 u,6

u,13
v,16

v,5 v,1 v,8

u,10
v,13

u,16
v,19

u,9
v,12

u,12
v,15

u,18
v,21

u,1

q = 1; ` = 1

q = 2; ` = 3

• Let n = |u| + |v|

• Remoteness of G(u, v): O(n logn) time and space
• I’s optimal moves: O(n2 logn) time, O(n logn) space
• II’s optimal moves: O(n) time and space (if the remoteness is
known)



An emerging pattern

Let A and B arbitrary structures.

Definition
A t-round local game on (A, #—a ,B,

#—

b ) is a game played on
NA
2t−1(

#—a) and NB
2t−1(

#—

b ) such that, at round t− k+ 1,
with 1 6 k 6 t, I must choose an element at distance at
most 2k−1 from #—a or from

#—

b .

Definition
A configuration (A, #—a ,B,

#—

b ) is t-locally safe if II has a winning
strategy in the t-round local game on (A, #—a ,B,

#—

b ).

• We write (A, #—a) ≡loc
t (B,

#—

b )

• II can play t rounds provided that I plays “near” distinguished
elements (nearer and nearer after each round)



How to count neighborhoods?

• The analysis of equivalence structures shows that we need to
count up to isomorphism and up to ≡loc

t -equivalence (in
equivalence structures, neighborhoods coincide with
equivalence classes; two equivalence classes are isomorphic iff
they have the same number of elements and they are
≡loc
t -equivalent iff they both have at least t elements)

• The analysis of labelled successor structures shows that we
need to count both the (free) multiplicity and the scattering of
neighborhoods (for equivalence structures, the two notions
collapse into one)

Conjecture
Counting the multiplicity and scattering of “small” neighborhoods
up to isomorphism and up to ≡loc

t -equivalence is enough for
characterizing the “global” winning strategy for arbitrary structures.



Complexity of the EF-Problem

• It is easy to prove that the problem is in PSPACE
• The difficult part is proving hardness for PSPACE
• The problem is in fact PSPACE-complete
• It is proved by reducing QBF (Quantified Boolean Formula) to
the problem of determining whether II has a winning strategy

• QBF formulas have the form

∃x1∀x2∃x3 · · ·Qxn (C1 ∧ · · ·∧ Ck)

where each Ci is a disjunction of literals



The EF-problem is PSPACE-complete

Theorem (Pezzoli)
The EF-problem for finite structures over any fixed signature that
contains at least one binary and one ternary relation is
PSPACE-complete.

• The proof for hardness goes by reducing QBF to the
EF-problem

• Given a QBF formula φ of the form

∃x1∀x2 · · · ∃x2r−1∀x2r (C1 ∧ · · ·∧ Cn),

we build two structures A and B over Σ = {E,H}, where E is
binary and H is ternary, such that I wins G2r+1(A,B) iff φ is
satisfiable



Sketch of the proof

• I’s moves correspond to existential quantifiers
• II’s moves correspond to universal quantifiers
• Structures A and B consist of r blocks
• Each block is made of a certain number of subgraphs, called
“gadgets”, which are of three types: J, L, and I

• Some elements of the domains are labelled by truth values or
pairs of truth values

• Some elements in the last block (block r) are labelled by
clauses of φ

• A pair of consecutive rounds i, i+ 1 is played within
block di/2e and corresponds to instantiate a pair of
consecutive variables ∃xi∀xi+1



Sketch of the proof (cont.)

• At round i, I assigns the truth value T (resp., F) to variable xi
by choosing an element in block di/2e of one of the structures
(say, A) “labelled” by T (resp., F)

• II is forced to reply by choosing an element “labelled” by a pair
of truth values TT or TF (resp., FT or FF) in B, which
corresponds to recording I’s assignment (the first truth value)
and to assign a truth value to variable xi+1 (the second truth
value)

• At round i+ 1, I chooses an “unlabelled” element in B

• II is forced to reply by recording the truth value of xi+1 in A

by choosing an element “labelled” the same as the second
truth value chosen at round i



Sketch of the proof (cont.)

E.g., the pair of rounds may go like this:

round i round i+ 1
s : T(xi) d : F(xi) A

d : TF(xixi+1) s : r B

• The “labelling” is encoded by a ternary relation H such that
H(u, v,w) holds iff

• u and v are adjacent in the same block
• w is in the last block and is labelled by clause Ck
• Clause Ck is made true by the truth values that label u

and/or v



Gadgets Jk, Lk
Circled node are special neighbours

z

t t ′
k

k

k

k

k− 1
k− 1
k− 1
k− 1

Gadget Jk
• four nodes in the middle
have k special neighbours
and target t

• four nodes in the middle
have k− 1 special
neighbours and target t ′

z

t t ′
k

k− 1
k

k− 1

k

k− 1
k

k− 1

Gadget Lk
• four nodes in the middle
have k special neighbours
(two with target t and two
with target t ′)

• four nodes in the middle
have k− 1 special
neighbours (two with
target t and two with
target t ′)



Gadget Ik

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x ′

t t ′

• x is linked to 16 nodes
• x ′ is linked to other 16 nodes
• Each node in the middle is the source of a gadget Jk−1 or
Lk−1

• All gadgets share the same two targets t and t ′

• Each node in the middle has either k or k− 1 special neighbors
• Ik is symmetric if Ik’s special neighbors are removed



Forcing pairs

Lemma
In the (k+ 1)-moves EF-game on (Ik, x, Ik, x ′), I can force the pair
(t, t ′), but II has a winning strategy in the k-moves EF-game that
allows him to answer t with t and t ′ with t ′.

• In the (k+ 1)-moves game I starts by playing v = kxJ (i.e., v
has k special neighbors, it is adjacent to x and it is the source
of a gadget Jk−1)

• II must answer with w = kx ′L
• otherwise, I wins by moving into the special neighbors

• I chooses w(k− 1)t ′ in Lk−1

• II must answer v(k− 1)t in Jk−1

Remark
The above lemma says nothing about who has a winning strategy.



Forcing pairs (cont.)

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x ′

t t ′

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x ′

t t ′

(Ik, x) (Ik, x ′)

v

t t ′
k− 1
k− 1
k− 1
k− 1

k− 2
k− 2
k− 2
k− 2

xk

w

t t ′
k− 1
k− 2
k− 1
k− 2

k− 1
k− 2
k− 1
k− 2

x ′ k



Forcing pairs (cont.)
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Forcing pairs (cont.)
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v

t t ′
k− 1
k− 1
k− 1
k− 1

k− 2
k− 2
k− 2
k− 2

xk

w

t t ′
k− 1
k− 2
k− 1
k− 2

k− 1
k− 2
k− 1
k− 2

x ′ k



Forcing pairs (cont.)
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Forcing pairs (cont.)
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The whole structure

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
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k k k k

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x ′

t t ′

Jk−3 Lk−3Jk−3 Lk−3 Jk−3 Lk−3 Jk−3 Lk−3 Lk−3
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x ′

t t ′

Jk−5 Lk−5Jk−5 Lk−5 Jk−5 Lk−5 Jk−5 Lk−5 Lk−5
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x ′

t t ′

s

Ik

Ik−2

Ik−4

I2

Block 1

Block 2

Block 3

A

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x ′

t t ′

Jk−3 Lk−3Jk−3 Lk−3 Jk−3 Lk−3 Jk−3 Lk−3 Lk−3
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x ′

t t ′

Jk−5 Lk−5Jk−5 Lk−5 Jk−5 Lk−5 Jk−5 Lk−5 Lk−5
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x ′

t t ′

s ′

Ik

Ik−2

Ik−4

I2

B

• Up to now, A and B are (2r+ 1)-equivalent
• A small modification of the structure is made
• A ternary relation is introduced, which establishes a
correspondence between a winning strategy for I and the
satisfiability of a given formula

• I has a “lawful” winning strategy in the expanded structure iff
the formula is true



The ternary relation H

• t and t ′ in the last block are replaced by two sets of elements
labelled by clauses of φ

• H(u, v,w) holds iff u and v are consecutive in the same
block i, w is in the last block and it is labelled by a clause Ck
and one of the following holds:

• u is labelled a ∈ {T , F}, v is labelled b ∈ {T , F}, or
• u is labelled ab, with a,b ∈ {T , F}, v is not labelled, or
• u is labelled ac, v is labelled b, with a,b, c ∈ {T , F},

• and assigning a to xi and b to xi+1 makes Ck true



Lawful strategies for I
• I starts playing in A

• Then, I will play in A at every odd round and in B at every
even round

• Besides, I plays on the “left” of A in odd rounds and on the
“right” of B in even rounds

• At each odd round, II is forced to record I’s choice in B, i.e., if
I picks an element labelled T in A then II must reply with TT
or TF, but not with FF or FT (otherwise, she is bound to lose
in less than 2r+ 1 rounds)

• Similarly, II is forced to record its choice in A at the next
round, i.e., if she has chosen TF in B then she will pick an
element labelled by F in A

• If II fails to play like that, at some following round I may pick
an element labelled by a clause C that appears in some triple
of H, but II would not be able to do so in the opposite
structure



Example

Example:
let φ = ∃x1∃x2 ((x1 ∨ x̄2) ∧ x̄1).
Suppose that during a game the following labelling is determined:

round 1 round 2

s : F(x1) d : F(x2) A

d : TF(x1x2) s : r B

Note that II has not recorded the correct move made by I. At last
round (round 3), I, instead of playing an unlabelled element,
chooses clause x̄1 in A, which determines a triple in H. II, however,
cannot put any tuple in H in B.



Complexity results for pebble games

• Pebble games are a variant of EF-games in which each player
has a limited number of pebbles and re-use them

• They correspond to formulas with a bounded number of
variables

Theorem
Given a positive integer k and structures A and B the problem of
determining whether II has a winning strategy in the existential
k-pebble game on A and B is EXPTIME-complete.

Corollary
All algorithms for determining whether k-strong consistency can be
established are inherently exponential.

P. G. Kolaitis, J. Panttaja
On the Complexity of Existential Pebble Games
CSL 2003



The proof of EXPTIME-completeness is not that easy. . .

i j i i’ j j’

h’hh

Fig. 2. I Gadget based on the one from [7]. is on the left and is on the right.

3.2 Single Input One-Way Switches

The Single Input One-Way Switches are used to restrict the ways in which the Spoiler

can win the game. The basic intuition is that the Spoiler can only make progress in one

particular direction; moreover, to do so he must use all of his pebbles.

This lemma is similar to Lemma 14 from [7], adapted to the -pebble game.

Lemma 1. For every there exists a pair of graphs and with ,

, and distinguished pairs of vertices, and

, such that:

y

x

y y’

O Ox x’4
S

4
D

Fig. 3. Single Input One-Way Switch

1. The Spoiler can reach from in the -pebble game on .

2. There exist two disjoint sets of positions of the -pebble game on ,

called Pretrapped and Trapped positions such that:

(a) Pretrapped and Trapped positions are partial homomorphisms

(b) The Duplicator can avoid positions that are not Trapped and not Pretrapped

from Pretrapped positions

x x x x

y y y y y y y y yy y y

0 1
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0

1
1 0

2
1
2

0
3

1
3

Fig. 5. Gadget
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Fig. 6. Gadget

Lemma 7. For every , in the -pebble game on , from a position

, , the Duplicator can choose any , and avoid for

.

4.2 Multiple Input One-Way Switches for the -pebble game

The idea of the Multiple Input One-Way Switch is to restrict the Spoiler’s potential

winning strategies. We simulate each node in the KAI game by using three nodes

in the Duplicator’s graph, . These correspond to not having pebble on in

the simulated game, having a pebble on in the simulated game, and no information

about , respectively. In the Multiple Input One-Way Switch, the Spoiler can only

make progress if he has information about each node in the simulated game. Also, if

the Spoiler attempts to play backwards through the Switch, he will end up with no

information about any nodes in the simulated game.

Lemma 8. For every , there exists a pair of graphs , and such that

and the following properties hold:

x x x x

y y y y

0 1 10

1y y

xxx x

y y

1 2 2 2

1 2
1 2

1 2 1 1

1 1 2 2
100

Fig. 7. A subgraph of

1. From a position , the Spoiler can reach the

position in the -pebble game on and

.

2. There exist two disjoint sets of positions of the -pebble game on ,

called Pretrapped and Trapped positions such that:

(a) Pretrapped and Trapped positions are partial homomorphisms

(b) The Duplicator can avoid positions that are not Pretrapped and not Trapped

from Pretrapped positions

(c) The Duplicator can avoid positions that are not Trapped from Trapped posi-

tions

(d) From any position where

, the Duplicator can avoid for all .

(e) All positions that are subsets of positions of the form

, are PreTrapped.

(f) If is Pretrapped and , then is Pretrapped for all

(g) Any position in which all of the Spoiler’s pebbles are on nodes , is Trapped.

(h) If is Trapped and , then is Trapped for all

Moreover, is and is .

4.3 The Rule Gadget

The Rule gadgets are used to simulate a move of the KAI game. One rule gadget causes

the Spoiler to lose if the rule gadget corresponds to a rule that cannot be applied, and

another causes the Duplicator to lose if the rule cannot be applied.

By combining this lemmawith the properties of theMultiple Input One-Way Switch,

we obtain a sufficient condition for the Duplicator to win the -pebble game.

4.5 Reduction from KAI Game to -pebble game
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Fig. 10. This is component decomposition of the Duplicator’s graph for the reduction

Theorem 12. Determining the winner of the -pebble game with part of the

input is EXPTIME-Complete.

Proof. (Outline)We will give a polynomial-time reduction from the KAI Game to the

-pebble game. Given an instance of the KAI game, we form an in-

stance of the -pebble game as follows.

The Duplicator’s graph and the Spoiler’s graph each have two sides. One side rep-

resents Player I’s turn in the KAI game, while the other side represents Player II’s turn.

First, we build Player I’s side of the graph. For each , we form three nodes

in , called . These three nodes correspond to specific information about

the simulated KAI game. If there is a pebble on , then there is a pebble on in the

KAI game, and corresponds to no pebble on . A pebble on in the Duplicator’s

graph means that the Spoiler has made a mistake. For each , construct a



Conclusions

• EF-games not explored much algorithmically
• What is the complexity of the EF-problem for (labelled)

arbitrary trees?
• What is complexity of the EF-problem for signature containing

only a binary relations E (i.e., graphs)?
• The question for the complexity of first-order equivalence for

finite structures, that is, isomorphism, is open (strictly related
to the graph isomorphism problem)

• Simpler proofs?
• May notions from Combinatorial Game Theory help?

• Berlekamp’s et al. Winning Ways
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